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A linear-stability analysis is performed on a vertical falling ~ with a surface-active 
solute. It is assumed in the present model that the surfactant is soluble and volatile. In 
addition to the surface wave mode and the ‘wall wave’ mode which originate from the 
gravity-driven flow of the falling iilm itself, a new mode of instability related to the 
Marangoni effect induced by surface tension gradients is found for low Reynolds 
numbers and for moderate- or short-wavelength disturbances. The new mode is 
thought to be analogous to the thermocapillary instability examined first by Pearson 
(1958). The Marangoni instability of large-wavelength disturbances, revealed by 
Goussis & Kelly (1990) in a study of a liquid layer heated from below, may be 
completely suppressed in the present system by the effect of surface-excess 
concentration of the surfactant. The influence of the desorption of the solute and of its 
adsorption at the gas-liquid interface is determined for both the surface wave mode 
and the new wave mode. Desorption of the surfactant is shown to be responsible for 
the Marangoni instability of the new mode. 

1. Introduction 
A stability analysis of a falling film was reported by Li & Ji (1994) for a solution to 

the Orr-Sommerfeld equation, using a numerical discretization technique. In addition 
to recovering the previously known surface wave mode of instability, a ‘wall wave’ 
mode was found to be unstable for high Reynolds numbers. In the present report, the 
effect of a surfactant on the instabilities of a falling film is investigated using the 
numerical technique of Li & Ji (1994). Previous analyses, such as the work by Whitaker 
(1964) and Lin (1970), are extended by taking into account the desorption of the 
surfactant. 

The origin of our problem is found in a practice common in absorption refrigeration. 
Some surface-active agents, when added in small quantities, increase the capacity of 
absorption cooling machines (Bourne & Eisberg 1966). It is generally thought that the 
cause for this effect, occurring only in the presence of a surfactant, is Marangoni 
convection. That interfacial convection occurs and has this enhancing effect has been 
verified experimentally for pools of aqueous lithium bromide solutions absorbing 
water vapour (Kashiwagi, Kurosaki & Shishido 1985). 

There are several analyses of Marangoni instabilities in mass or heat transfer systems 
(Pearson 1958; Scriven & Sternling 1964; Brian 1971; Brian & Ross 1972; Imaishi et 
al. 1983; McTaggart 1983; Castillo & Velarde 1985; Dijkstra 1988; Ho & Chang 1988; 
Goussis & Kelly 1990; Goussis & Kelly 1991 ; PCrez-Garcia & Carneiro 1991 ; Ji, 
Bjurstrom & Setterwall 1993). Brian (1971) and Brian & Ross (1972) showed that the 
surface excess of adsorbed solute opposes surface movement and delays or inhibits the 
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appearance of instability, even though the surface activity of solute is a prerequisite for 
instability : when it is desorbed, the surface tension of the liquid increases. Experimental 
verification of Brian’s analysis was obtained by Imaishi et al. (1983). 

However, previous studies of the Marangoni instabilities were mostly made on static 
films, or films with initially homogenous velocity. The mechanism of the improvement 
of the mass transfer rate by surface-active solute in falling films is not well understood. 
It is well known that isothermal flow down a vertical plane, in the absence of mass 
transfer processes such as evaporation or condensation, is unstable for all finite 
Reynolds numbers (Benjamin 1957; Yih 1963). Usually, an inactive surfactant has a 
stabilizing effect on falling films. Emmert & Pigford (1954) found experimentally that 
the addition of a wetting agent reduces rippling in falling liquid films. Whitaker (1964) 
indicated that surface elasticity was primarily responsible for the stabilizing action. Lin 
(1970) showed that both soluble and insoluble surfactants have a stabilizing effect on 
falling films, suppressing the natural wave instability. Several mechanisms may 
enhance or inhibit the instability of a falling film containing a surface-active solute and 
absorbing a vapour : adsorption of surfactant at the interface, its desorption from the 
liquid and the absorption process which includes both mass and heat transfer. 
Unstable modes other than those for an inert falling film may also appear. 

The surface wave together with the thermocapillary instability have been studied for 
long-wavelength disturbances on a liquid film flowing down an inclined heated plane 
(Lin 1975; Kelly, Davies & Goussis 1986). The same problem but for disturbances of 
finite wavelength has been discussed in detail by Goussis & Kelly (1991). They 
indicated that three mechanisms cause the instabilities of the flow. One of them is 
associated with the shear stress of the basic flow at the deformed free surface and causes 
the instability of the surface wave. Both the other two mechanisms cause the 
thermocapillary instabilities. One is associated with the interaction of the basic 
temperature with the perturbation velocity field and causes thermocapillary instability 
of moderate-wavelength disturbances. The other one is associated with the modification 
of the basic temperature at the free surface by the surface deformation and causes 
thermocapillary instability of long-wavelength disturbances. The regions in their 
stability diagrams where each of the mechanisms dominates could be completely 
separated because they used a specific set of non-dimensional parameters in which the 
layer depth appears in one parameter only. Their results show that the instability can 
assume the form of either long transverse waves or short longitudinal rolls depending 
on which of the mechanisms that trigger the instabilities is dominant. 

The mathematical model developed here includes desorption and Gibbs adsorption 
of surface-active agents. The effects of both phenomena on the instabilities of a falling 
liquid film are investigated. The critical conditions for instabilities and the fastest 
growing waves are determined. However, only instabilities in the form of transverse 
waves are studied in the present work. 

2. Formulation of the problem 
We consider a liquid film flowing down a vertical plane. Cartesian coordinates are 

used in writing the equations, with x* in the direction of gravity, and y* perpendicular 
to the plane. The origin of y* is defined at the free surface of the primary flow, which 
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is assumed steady and parallel to the wall. Using the assumption of zero surface shear 
stress, the velocity profiled is obtained as 

g u* = - 2v (8 --y*2), 

where U* is the velocity, d the depth of the film, g the gravitational acceleration, and 
v the kinematic viscosity. The velocity profile can also be written in dimensionless 

(1) 
form : 

where U = V / U , ,  Urn being the maximum velocity of the primary flow, equal to 
gdL/(2v), and y = y*/d .  

When analysing the stability of the primary flow, we may consider only two- 
dimensional disturbances (Yih 1963). In the model, all the physical properties will be 
assumed to be constants, except the surface tension. The basic equations for the 
problem are the equation of continuity: 

v.u* =o, (2)  
the incompressible Navier-Stokes equation : 

u= l -y2,  

au* 1 -+u*.vu* = --Vp*+vV%*+g, 
at* P 

and the advection-diffusion equation for the surface-active solute : 

ac; 
-+u*-VC;  at* = DAV2c;. 

( 3 )  

(4) 

In the above equations, u* = (u*,v*), where u* and v* denote the velocity 
components in the x* and y* directions respectively, t* is the time, p* the pressure, g 
the gravitational acceleration, p the density, v the kinematic viscosity, CX the bulk 
concentration of surface-active solute, and D, the diffusivity of the surfactant in the 
solution. 

At the free-surface boundary (y* = v*) the kinematic condition, the normal stress 
balance and the tangential stress balance can be formulated as follows: 

where q* is the displacement of the free surface from its mean position, p,* the pressure 
in the gas phase, and IT the surface tension. When deriving these boundary equations, 
the surface deformation q* has been assumed to be infinitesimal. The surface tension 
is here supposed to be a function of the concentration of surface-active solute, and a 
linear relationship is assumed : 

where cAo is the initial concentration of the surface-active solute, and 6, the surface 
tension at cA,. 

Two types of behaviour of the surface-active solute will be considered in the present 
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model: desorption from liquid phase to gas phase, and adsorption on the surface. 
However, the kinetics of adsorption are not considered in the present model We 
assume that the surface excess may be calculate by means of the Gibbs equation using 
the static surface tension. An experimental study by Yao, Bjurstrom & Setterwall 
(1991) on the surface tension of a lithium bromide aqueous solution in the presence of 
surfactants 1-octanol and 2-ethylhexanol suggests that the surface excess may be 
approximated by a constant in a certain range of concentrations below the solubility 
limit of the surfactant. In Brian's (1971) analysis of the effect of Gibbs adsorption on 
Marangoni instability, it was assumed that the 'Gibbs depth' is constant, which is 
reasonable for some surfactants in pure water. As mentioned in the Introduction, the 
goal of our work is to understand the effects of a surfactant in an absorption system, 
where a lithium bromide aqueous solution is usually used as working fluid. We adopt 
then the results for the surface tension from Yao et al. (1991) and assume in the model 
that the surface excess of surfactant is constant. The other two assumptions when 
deriving the boundary equation for the surface-active solute are that the concentration 
of the surface-active solute in the gas phase is zero and that there is equilibrium at the 
interface between the concentration in the gas phase and the concentration in the liquid 
phase. The mass balance for the surface-active solute at the interface, y* = q*, may be 
formulated as 

where k, is the gas-phase mass transfer coefficient of the surface-active solute; m the 
solubility coefficient which is defined as the ratio of the concentration in liquid phase 
to the concentration in the gas phase at equilibrium, and rC the surface excess 
concentration. In (9), the term on the left-hand side represents diffusion of the 
surfactant to the surface from the liquid beneath. The first term on the right-hand side 
represents the desorption, or evaporation, of the surfactant from the liquid phase into 
the gas phase. The second term multiplied by the surface excess concentration rC 
represents mass transfer by advection of the surfactant within the adsorbed layer. 

At the wall boundary, y* = d, the no-slip velocity condition requires that 

u* =o,  v* =o,  (10) 

and the no-mass-flux condition requires that 

Although the derivation of the linearized perturbation equations is trivial, we 
describe the main steps here for clarity. The governing equations are made 
dimensionless as follows : 

Each of the dimensionless variables, u, v,  p and cA, is then represented by the sum of 
the unperturbed value and an infinitesimal perturbation : 

u = u+ u', 0 = p = ps +pry CA = cAs + C l .  (1 3) 

The steady unperturbed concentration of the surface-active solution cA, is assumed 
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FIGURE 1. Basic-state concentration of surface-active solute (Bi, = 10, Pe, = loE, x = 1OOO). 

to be a function of y only. It may be expressed in dimensionIess form as follows, using 
the solution discussed in the Appendix: 

c A , ( Y )  = erf(yl)+expk2-Y;) [l-erfk)l, (14) 

with 

where x is dimensionless film length to be fixed in the calculations, Pe, is the mass 
PBclet number for the additive, and BiA the Biot number. Figure 1 shows the profile of 
cA, calculated at BiA = 10, Pe, = lo6 and x = 1000 which corresponds to a 1 m length 
of the film if d =  1 mm. 

Since the velocity perturbations satisfy the continuity equation, V - uf = 0, a stream 

(16) 
function $ is introduced 

using subscripts to denote partial differentiation. Combining (12), (13) and (16) with 
the governing equations (2x7) and (9)-(11), using (1) and (8), and neglecting terms 
quadratic in the perturbation quantities, we obtain the following dimensionless 
perturbation equations: 

uf = $u, vf  = -$ 2, 

with the boundary conditions at y = 0 

rlt  + 72 = - $29 
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(24) 
a,; 
aY 

$kx=o,  $kry=o, -=o. 

In these equations Re is the Reynolds number, Cr is the Crispation number, Ma, the 
Marangoni number, and r the adsorption number: 

The system is homogeneous in the x-direction because of the assumption that the 
unperturbed concentration c,, depends only on y. The perturbations may then be 
assumed to be of the normal mode form 

3 .) (26) 
$k = $( y) eia(x-ct) , p‘ = p( v) eidz-ct) 

irr(z-ct) , 7 = r o e  ‘ - f( y) eiu(z-ct) 
‘ A  - 

where a is the real wavenumber, and c is complex, c = c,+ic,. The wave velocity is c, 
and the growth rate is given by act. 

Substituting (26) into the kinematic condition (20) yields 

To = -WO)/(l -4. (27) 
Substituting (26) into (1 7)-( 19), and eliminating P by cross-differentiation with the 

momentum equations, yields the well-known Orr-Sommerfeld equation 

and the equation for the perturbed concentration of surfactant 

Boundary conditions (20)-(24) become 

- $“‘(O) + [iaRe( 1 - c) + 3a2] $‘(O) + ia3 

$(O) - #YO) + [ - 2 - a2( 1 - c) - iaMu, c;.(O)] - + iaMu,f(O) = 0, 

-f’(O) + BiAf(0) + iar$’(O) - (Bi, c;.(O) - c:.(O)) - = 0, 

$( 1) = 0, #( 1) = 0, f’( 1) = 0, 

1 - c  

$(O)  
l - c  

in which the primes now denote differentiation with respect to y. 

3. Solution procedure 
3.1. Integral boundary condition 

The simultaneous equations (28) and (29) together with their boundary conditions 
constitute an eigenvalue problem. This can be solved by using a numerical integration 
scheme in conjunction with a shooting method. But here we may treat (28) and (29) 



Stability of vertical falling films with a surface-active solute 303 

separately since the function f couples to the fluid quantities only through the 
boundary conditions and does not appear in the internal Orr-Sommerfeld equation. 
We can then obtain an integral boundary condition which can be greatly simplified 
under certain circumstances. In this case, we need only to solve the single 
Orr-Sommerfeld equation. The numerical calculations of (28) with the integral 
boundary condition could be much faster than the direct calculations of the 
simultaneous equations (28) and (29). 

To derive this integral boundary condition, we rewrite (29) as 

Lf = - iaPe, c;, 4, 
where the operator L = (d2/dy2) - a’-iaPe,( U- c). 

Let us consider the ‘conjugate solution’ of (34), 

(34) 

Lg = 0, (35) 

g’(0) = - 1, g’(1) = 0. (36) 

with the following boundary conditions: 

The homogeneous equation (35) for g can be solved numerically using the efficient 

Now let us consider the relation 
tridiagonal solver (Li & Ji 1994). 

(gLf--fLg)dY = (gf”-fg”)dy = -~(O)f’(O)+f(O)g’(O), 
0 

where the boundary conditionsf’(1) = 0 in (33) and g’(1) = 0 in (36) have been used. 
On the other hand, from (34) and (33 ,  

f (sLf - f i g )  dy = - iaPeA f gc;, d dy 
0 0 

so, we have 
1 

f (O) g’(O) -d0)f’(O) = - iaPeA Jo gC;, d 

Combining this expression with (32), we obtain 

{g(O) [iaT$‘(O) - (Bi, c>.(O) - c;.(O)) 1 - c  

(37) 
The integral boundary condition is then obtained by inserting (37) into (31) as follows: 

d(0) + iaMa, #yo) + a2$(0) - u” - 
1 - c g’(0) -g(O) BiA 

’(O) g(0) iarqY(0) + iaPe, gc;, q5 dy = 0. (38) 

This equation contains an integral with respect to 4, which can be interpreted as a 
global ‘boundary’ condition involving all values of # along the y-coordinates. 
However, the function c i a  is almost zero everywhere except in the vicinity of the 
interface, see figure 1. This enables us to expand q5 and therefore to express the integral 
as a Taylor expansion. In general, we write 

C I  
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in which Mk is defined as 
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1 I I  

The magnitude of Mk is expected to decay rapidly and it has been verified in the 
calculations that the first four or five terms in the expansion (39) are enough to keep 
the accuracy. Taking the first four terms, we may write 

and by introducing the function $, 

$=$ly9"- a,$, 
we can write the Orr-Sommerfeld equation as a set of second-order equations (Li & 
Ji 1994). 

3.2. Numerical scheme 
The numerical technique developed by Li & Ji (1994) for solving the Om-Sommerfeld 
equation in the case of a single-component falling film flow is employed here for the 
solution of the extended eigenvalue problem when a surfactant is present. The main 
feature of the scheme is that the discretized matrix has a block-tridiagonal form. 
Compared to a straightforward finite-difference scheme in conjunction with a shooting 
method, it may have the following advantages. (i) It is faster. The calculation for a 
tridiagonal matrix by Guassian elimination is proportional to n, where n denotes the 
number of grid points. But the calculation using a finite-difference method is 
proportional to n3. (ii) The scheme is very simple to implement. 

Compared with the equations for a pure falling film flow without any heat or mass 
transfer (Li & Ji 1994), there are changes neither in the inner (Orr-Sommerfeld) 
equation, (28), nor in the wall boundary conditions, (33). The differences arise in the 
two boundary conditions at the interface: the presence of a surfactant in the film 
requires a modification of the normal force balance and of the tangential force balance. 
These will degenerate to the equations for pure falling film flows when Ma, = 0. The 
numerical scheme for solving this eigenvalue problem has been described in detail in 
Li & Ji (1994). The scheme uses a Taylor expansion to discretize the differential eigen- 
equation into an algebraic one with block tridiagonal form. This system can be solved 
by Gaussian elimination. The equation matrix may be written as 

(42) 
Cn-1 1, D=r 2: c, a,;,,, 

An-1 Bn-1 

anin-* ... a n ; n - l  a n n  

in which the block matrices are all 2 x 2. Formulae for the inner points A,, B,, C,, i = 
2 , n -  1, are given by Li & Ji (1994) for a sixth-order Taylor expansion, together with 
the formulae for the wall boundary ank, k = n - m, n. Here, we state only the part of 
the matrix that differs from that of Li & Ji (1994) : the block matrix Blk, k = 1, m + 1, 
in the first line. 

Using (40) and (41), the two boundary equations (30) and (38) at the interface may 
then be written in the form: 
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b1 = - + Ma,( 1 - cA,(0)) b, = iaRe( 1 - c) + 2a2, [ d, 
C, = 1 + p4 iaPe, M,, c2 = p4 iape.., M3 

d, = p4[ -g(O) i a r +  iaPe,(Ml + a2M3)], p4 = 
iaMa, 

g'(0) -do) BiA * 

We may write the derivatives $'(O) and +'(O) to mth-order accuracy as 

Here, h is the spacing of the grid mesh. The coefficients pk can be derived from the 
approximate expression for the functions from the mth-order Lagrange polynomial, as 
shown in Li & Ji (1994) for m = 2,4,8. The block matrices on the first line of the 
equation matrix are then 

a,, = tPk bzPk), k = 2,3 , .  . . ,m+ 1 .  
'2Pk d2Pk 

4. Results and discussion 

mass PCclet number Pe, is chosen as los. 
In all the cases discussed below, the Crispation number Cr is chosen as 0.2, and the 

4.1. Spectrum ; new eigenmode 
Spectra of the eigen-equation for falling liquid films without surfactant have already 
been investigated in detail (Li & Ji 1994). Two modes were found to become unstable 
for certain Reynolds numbers or wavenumbers: the so-called surface wave and 'wall 
wave'. The structure of the spectra for Re = 20 and a = 1 is shown in figure 2(a) for 
falling films without surfactant, and in figure 2(b) for falling films with a surfactant but 
with Ma, = 0. It is seen by comparing the two figures that there is an additional mode 
in figure 2(b). This new mode may be explained as follows: when deriving the integral 
boundary equation (38) it was noted that the perturbed concentrationfcouples to the 
fluid equations only through the boundary conditions. Furthermore, the advection- 
diffusion equation decouples to the fluid equations when Ma, = 0, see (30) and (31). 
Therefore, in the case Ma, = 0 of figure 2(b), one may interpret the new mode 
as that for which the disturbed velocity is trivial, but the disturbed concentrationf 
has an independent non-trivial solution. 

Actually, there is not just only one new mode from the advection-diffusion equation 
of surfactant. This cannot be shown completely in the plot of figure 2(b) because of the 
difference of scale between the modes and some numerical limitations. A plot of the 
spectrum for the eigen-equation of the transport of surfactant with the same parameter 
values as figure 2(b) is given in figure 3(u). One can see that the real part of the 
spectrum of the new modes is close to 1 ,  especially for the first ones. This means that 
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FIGURE 3(a) Spectrum in the c-plane for the eigen-equation of the advection-diffusion equation of 
surface-active solute with zero perturbed velocity ((29) with d = 0) (a = 1, Bi, = 10 and Pe, = lo6). 
(b) Eigenfunctions of the first 4 modes for the advection-diffusion of surfactant (a = 1 and Bi, = 10). 
The solid lines represent the real part of the eigenfunctions, and the dashed lines the imaginary part. 
The eigenvalue for each mode is shown under its graph. 
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1 ' 1 ~ 1 ~ 1 '  80f  8 I 1 8 1 t 1 1 

- 

- 

l . l I I I l l  -80 0 0 ' * ' 0  
1 '  

Ma, Re = 5000 Re = 10000 

0 c = (0.267840, - 1.75271D-03) c = (0.237413,3.75806D-03) 
2 c = (0.237400, 3.76006D-03) 
4 c = (0.237388, 3.76206D-03) 
6 c = (0.237375,3.76406D-03) 
8 c = (0.267710, - 1.75448D-03) c = (0.237362, 3.76604D-03) 

10 c = (0.267677, - 1.75500D-03) c = (0.237350,3.76802D-03) 

c = (0.267807, - 1.753 IOD-03) 
c = (0.267 775, - 1.753 52D-03) 
c = (0.267 742, - 1.753 98D-03) 

TABLE 1. Eigenvalues of the 'wall wave' mode of the falling film (a = I ,  BiA = 10, r = 2000) 

the wave velocity of the modes is close to the surface velocity of the falling film. The 
eigenfunctions of the perturbed concentration of surfactant are shown in figure 3 (b) for 
the first four modes, numbering the modes here according to the values of their 
imaginary parts. The eigenvalue for each mode is given below the corresponding plot 
of the function. It can be clearly seen that modes of higher mode number have a more 
oscillatory structure and are more stable. It has been verified in the calculations that 
the eigenfunction f is equivalent to the function g for the special case Ma, = 0. Its 
eigenvalues depend only on a, Bi, and Pe, and satisfy the following equation: 

g'(0) -g(O) Bi, = 0. 
Since these new modes exist even if the velocity field is unperturbed, when 

Ma, = 0, they are the solution of the eigen-equation derived from the advection- 
diffusion equation for the surfactant with the primary parabolic velocity. They may be 
called 'diffusion waves'. The eigenvalues in figure 3(b) show that these waves are 
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FIGURE 5. Eigenfunctions of the ‘diffusion wave’ with Marangoni number as parameter (Re = 20, 
a = 1 and BiA = 10). The solid lines represent the real part of the eigenfunctions, and the dashed 
lines the imaginary part. The eigenvalue for each case is shown under its graph. (a) Ma, = 0.01, 
(b) Ma, = 1. 

decaying, as the imaginary parts of the growth rate w, defined as w = ac, are negative. 
When the advection4iffusion equation and the fluid equations are coupled with each 
other through the boundary conditions at the interface, i.e. when Ma, 4= 0, ‘diffusion 
waves’ develop, and one finds that only the first mode may become unstable. We shall, 
then, discuss this first mode in more detail but not the other new modes, and we call 
it a ‘diffusion wave’ in the following to distinguish it from the waves associated with 
a falling film flow without surfactant. 

4.2. Effect of Ma, on the unstable modes 
Figure 4 shows the dependence of the eigenfunctions of the surface wave on the 
Marangoni number. The parameters in the calculations have the following values: 
Re = 20, a = 1, Bi, = 10 and r = 2000. The solid lines represent the real part of the 
eigenfunctions, and the dashed lines represent the imaginary part. The functions are 
scaled using the maximum value of 9. The eigenvalue for each case is shown under the 
graphs. It can be seen that as Mu, increases, the ratio of function f to function g5 
becomes smaller, and the mode becomes more stable. 

The calculations show that Ma, has only a limited effect on the ‘wall wave’ mode 
of falling films, see table 1. This is what we expect since the ‘wall wave’ mode is mainly 
associated with the wall, as its name indicates. The Marangoni number is introduced 
in the boundary equations of the interface, and thus its effect is largely near the 
interface. This ‘wall wave’ mode will be discussed no further since we are more 
interested in the instabilities of falling films at low or moderate Reynolds numbers. 

Figure 5 shows the eigenfunctions with the same parameter values as in figure 4 but 
for the new ‘diffusion wave’. Here, we use the maximum value of f to  scale the two 
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FIGURE 6. Neutral curve of the surface wave (-) and the 'diffusion wave' (-----) in the (a, &)-plane 
with Marangoni number as parameter (Bi, = 10, r = 2000). (a) Mu, = 0.15, (6) Ma, = 0.6, (c) 
MU, = 2. 

functions instead of q5 as in figure 4 because q5 tends to zero as Mu, tends to zero for 
this mode. It is seen that the ratio of q5 to f is much smaller than that of the surface 
wave, but it becomes larger as Ma, increases, similarly to figure 4. The results for 
eigenvalue c show that the mode may become unstable for large MaA, which is in 
contrast to the results for the surface wave. The reason for the mode becoming unstable 
may be the Marangoni effect. When Ma, += 0, the concentration f couples to the 
velocity through the tangential force balance at the interface. The surface tension 
gradient caused by the surfactant concentration gradient may induce Marangoni 
convection. 

The domains of instabilities for both the surface wave and the 'diffusion wave' 



Stability of vertical falling films with a surface-active solute 311 

modes are illustrated in figure 6(a-c) using the neutral curves in the (a,Re)-plane to 
show their boundaries. The parameter values are r = 2000, Bi, = 10 and Ma, = 0.15, 
0.6 and 2. Marangoni convection corresponding to the ‘diffusion wave’ occurs at larger 
wavenumbers than that of the surface wave mode. The larger Mu, is, the smaller is the 
unstable region for the surface wave and the larger is the unstable region for the 
‘diffusion wave’. 

The growth rate of the perturbations, defined by ac, with c, the imaginary part of c, 
is illustrated in figure 7 as contour plots in the (a, Re)-plane for both the surface wave 
(figure 7a) and the ‘diffusion wave’ (figure 7b). The domains of instabilities are those 
where the growth rate is positive. The ‘diffusion wave’ seems to be much weaker than 
the surface wave: the maximum growth rate is much smaller than that of the surface 
wave. This is not necessarily always so for all values of the parameters. As Ma, 
increases, for example, the growth rate of the diffusion wave increases and the growth 
rate of the surface wave decreases; the two waves may become comparable with each 
other. Figure 7 (b) indicates that the most unstable wave of the ‘diffusion wave’ occurs 
at small Reynolds numbers. 

Let us now investigate more closely the marginal state, for which the imaginary part 
of the phase velocity c is zero, and the most unstable waves for the model system. The 
parameters related to the presence of a surfactant are the Biot number Bi,, the 
adsorption number r and the Marangoni number MU,. 

4.3. Eflects of surface-active solute on the surface wave 
From the plots of the neutral curves in figure 6, one sees that, as Ma, increases, the 
critical wavenumber of the surface wave decreases: in other words, the unstable region 
in the (a, Re)-plane becomes smaller. This increased stability is also found in plots of 
the dependence of the most unstable wave on Ma, in figure 8. The conclusion is that, 
as is well-known, the presence of a surfactant restrains the surface wave. As Ma, 
increases, the wavenumber of the most unstable wave decreases as does its growth rate. 
But the wave velocity for the most unstable wave increases as Ma, increases. 

The effect of Bi, and r on the mode is illustrated in figure 9(ed) .  Adsorption of 
surfactant has a stabilizing effect on the surface wave. A higher r results in smaller 
wavenumbers both for the neutral wave and the most unstable wave, and in a lower 
growth rate for the most unstable wave. But the wave velocity of the most unstable 
wave increases as r increases. Varying Bi, in a wide range, from 1 to 100, shows that 
desorption of surfactant has only a small effect on the surface wave in comparison with 
that of r or Ma,. The effect of Bi, may be larger for a higher r a n d  a higher Bi, itself. 
In such a case, the effect of Bi, on the critical wavenumbers and the parameters of the 
most unstable wave is opposite to that o f f ,  see figure 9. 

In the previous analyses (Whitaker 1964; Whitaker & Jones 1966; Lin 1970) for the 
flow of a film covered with soluble or insoluble surface-active agents, it was found that 
both soluble and insoluble surface-active agents have stabilizing effects. (Lin 1970 
pointed out that his analysis is only for the instability due to the long surface wave.) 
Since the desorption of the surface-active agent was not considered in their model, the 
Marangoni instability is thus not likely to occur. Here, we consider only soluble 
surface-active agents, but the boundary condition is more complex, including the 
desorption of the surfactant. Figure 9 indicates that the stabilizing effect of a surface- 
active agent on the surface wave depends strongly on the adsorption number r. This 
is in accordance with the results of previous authors. The accumulation of the surface- 
active substances at the surface could stabilize the film flow through its effect on the 
tangential surface tension force, as explained by Lin (1970). 
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4.4. Egects of surface-active solute on the ‘dzffiion wave’ 
The plots in figure 6 show that the unstable region of the mode of a ‘diffusion wave’ 
in the (a, &)-plane is larger for a larger Ma,. Figure lO(a-c) shows the effect of Ma, 
on the most unstable waves of the mode. The wavenumber having maximum growth 
rate decreases as Ma, increases. The maximum growth rate increases as Ma, increases. 

The effect of the Biot number BiA on the critical waves and the most unstable waves 
of the mode is illustrated in figure 11 (a-d). In the calculations, Ma, = 1 and = 2000. 
The unstable region in the (a,&)-plane becomes larger as Bi, increases, see figure 
ll(a). For the most unstable waves, the wavenumber increases, wave velocity 
increases, and the growth rate increases as Bi, increase. These results indicate that a 
faster evaporation rate of surfactant from liquid phase to gas phase causes the mode 
to be more unstable. 

Contrary to the destabilizing effect of the desorption of surfactant, the adsorption 
of surface-active solute tends to inhibits the Marangoni convection. As shown in figure 
12(a-d), the unstable region in the (a, Re)-plane becomes smaller as T increases, and 
it may disappear when T exceeds a certain value. For the most unstable waves, the 
wavenumber, the wave velocity and the growth rate all decrease as r increases. 

A better understanding of this mode is obtained by examination of figure 13, a plot 
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of neutral curves for the 'diffusion wave' in the (Ma,, +plane. For a fixed Reynolds 
number there is a critical Marangoni number, defined here as the minimum in the 
neutral curve in the (Ma,,a)-plane and denoted by Ma,,, below which there is no 
Marangoni instability of the 'diffusion wave'. The figure shows that conditions for 
Marangoni convection are more favourable when the Reynolds number is smaller. The 
dependence of Ma,, on Bi, and 1"is shown for Re = 50 in figure 14(a) and figure 14(b) 
respectively. Ma,, increases when 1" increases or Bi, decreases. It tends towards 
infinity when Bi, becomes very small or when r tends to a certain high value, in which 
cases the 'diffusion wave' will never become unstable. The results demonstrate that 
desorption of the surfactant (Bi,) is necessary to produce the Marangoni instability, 
while adsorption of the surfactant (I) could completely suppress the instability. 

Goussis & Kelly (1990) in their studies of a horizontal liquid layer heated from below 
indicated that there are two distinct mechanisms by which thermocapillary instabilities 
may be triggered. One mechanism is associated with the interaction of the basic 
temperature with the perturbation velocity field. This type of instability was fmt 
examined by Pearson (1958) who assumed a rigid free surface. The 'diffusion wave' 
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reported here may be interpreted as a Marangoni instability of this type by comparing 
figure 13 with the stability diagrams reported by Pearson. The other mechanism is 
associated with the modification of the basic temperature at the free surface by the 
surface deformation and causes thermocapillary instability of large-wavelength 
disturbances. This type of instability in the present model will be discussed in next 
subsection. 

We note that in the stability diagrams reported by Pearson (1958) the thermo- 
capillary instability is more stable for a larger heat transfer at the interface, the 
transfer rate being represented by parameter L in his article. But our results here show 
that the ‘diffusion wave’ is more unstable for a higher evaporation rate of the 
surfactant (BiA). This may be explained as follows. In our model the basic 
concentration, which is given by (14), depends on the parameter BiA, but in Pearson’s 
model the basic temperature is predefined and is independent of the parameter L. It has 
been verified in the calculations that if the basic concentration is fixed, an increase in 
BiA will lead to a more stable ‘diffusion wave’. Since the mechanism for the instability 
of a ‘ diffusion wave ’ is associated with the interaction of the basic concentration with 
the perturbation velocity field, according to the analyses given by Goussis & Kelly 
(1990), a higher BiA in the basic state will result in a steeper basic concentration and 
thus a more unstable ‘diffusion wave’. On the other hand, a higher BiA for the 
perturbed concentration will reduce the surface tension driving force for the instability. 
Clearly the destabilizing effect of desorption of the surfactant on the ‘diffusion wave’ 
shown in figure 11 is because of its effect in producing a non-uniform basic 
concentration. 

4.5. Marangoni instability of long-wave disturbances 
We shall examine the Marangoni instability of long wave disturbances in this 
subsection to complete the study. 

Goussis & Kelly (1991) concluded for a thin film flowing down a heated plate that 
three mechanisms exist to cause the instabilities of the flow. One mechanism is for the 
surface wave, and the other two are for the thermocapillary instabilities, presented in 
94.4. They indicated that both the hydrodynamic surface wave and the thermocapillary 
instability of the long wave depend strongly upon the angle of inclination of the plane. 
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(b) Re = 100 (Bi, = lO,Pe, = lo6). 

Their result showed that on increasing the angle, the range of values of the Archimedes 
number (which measures the depth of the layer) for which the flow is stable decreases. 
The two unstable regions in the diagram may then form a single unstable region for 
certain large angles. In the limit case of a vertical falling film, the hydrodynamic surface 
wave is unstable for all depths (Benjamin 1957; Yih 1963). 

In our stability diagrams for a vertical falling film in the presence of a surfactant, it 
appears that there could be only one unstable region for large-wavelength disturbances, 
although there are two mechanisms to trigger the instabilities: the basic flow shear 
stress and the surface tension force. It therefore may not be possible to show the 
Marangoni instability of the interfacial mode explicitly here, but, at least, we may 
determine how the two mechanisms affect each other in causing the instabilities in the 
region of small wavenumbers. 

Results in $4.3 show that the presence of a surface-active solute stabilizes the surface 
wave, see figure 8. The stabilizing effect is largely due to adsorption of the surfactant, 
the parameter r, see figure 9. In order to compare our results with the previous works, 

11-2 
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we need to recalculate the surface wave for zero surface-excess concentration (r = 0). 
In addition to this, there is an another difference between our model and that of 
Goussis & Kelly (1 991) : the surface tension in the normal force balance, expressed by 
the sum of the two terms in the second square brackets of (30), increases with the 
Marangoni number Ma, in the present model but it is fixed in theirs. We shall remove 
the term multiplied by Ma, in (30) in the following calculations. 

Figures 15 (a) and 15 (b) show the neutral curves for both the surface wave and the 
‘diffusion wave’ in the (Ma,,a)-plane using Cr as a parameter, for Re = 1 and 100 
respectively. Figures 16(a) and 16(b) show the maximum growth rates as a function of 
the Marangoni number, again using Cr as a parameter but for the surface wave only. 
We also examine here a special case where the effect of the surfactant on the flow is only 
due to the modification of the basic concentration at the free surface by the surface 
deformation, the perturbed concentration not being considered, i.e. the last term on the 
left of (31) being removed. There is no unstable ‘diffusion wave’ in this special case. 
The results marked ‘Test model’ in the figures, show clearly that the two mechanisms 
- the basic flow shear stress and the surface tension force - reinforce each other in 
causing instabilities in the region of small wavenumbers, both the critical wavenumbers 
and the growth rates of the surface wave increasing gradually with increasing Ma,. 
This is in accordance with the results of previous authors (Goussis & Kelly 1991). 
However, the critical wavenumbers and the growth rates increase only slightly when 
the perturbed concentration is present in (31), for both Cr = 1 and 0.2. This 
demonstrates that the mechanism which could cause an unstable ‘diffusion wave’ 
stabilizes the instabilities of long-wave disturbances. In the case of Cr = 0 there is only 
a ‘diffusion wave’, because the deformation of the free surface (Cr += 0) is essential for 
both mechanisms which may trigger the surface wave and the Marangoni instability of 
the interfacial mode respectively. 

There would be only one unstable region for the surface wave and the ‘diffusion 
wave’ in the (Ma,. a)-plane when the Marangoni number is large enough, see figures 
15(a) and 15(b). The value of Ma, above which the two unstable regions merge 
decreases as Cr increases. These may be analogous to the results reported by Goussis 
& Kelly (1990) in their stability diagrams: the two unstable regions for the 
thermocapillary instabilities approach each other as the Marangoni number increases 
for large Bond numbers (which is equivalent to Cr in measuring surface tension), 
forming a single unstable region. 

Figures 15(a) and 15(b) also show that with increasing Cr the unstable region for 
surface wave increases, while the unstable region for the ‘diffusion wave’ decreases for 
small wavenumbers. This seems to be in conflict with the previous results that the 
surface deformation destabilizes the Marangoni instabilities (Scriven & Sternling 1964; 
Goussis & Kelly 1990). However, one may note that the Marangoni instability studied 
here is for transverse waves whose wave number vectors are in the direction of 6lm 
flow. Goussis & Kelly (1991) indicated that there is stabilizing effect from the basic flow 
on the Marangoni instability of the transverse waves due to the basic shear stress at the 
free surface and the Reynolds stress in the bulk of the fluid. The results of figures 15 (a) 
and 15 (b) may then be understood as follows. For small wavenumbers, a higher Cr (or 
a lower surface tension) will result in a larger surface deformation, and thus cause a 
more unstable surface wave. But it may not necessarily destabilize the ‘diffusion wave’ 
since the stabilizing effect from the basic flow would be larger for a larger surface 
deformation. Consequently, the ‘diffusion wave’ may be more stable for a lower 
surface tension. For large wavenumbers, the surface tension effect becomes stronger in 
opposing the surface deformation. The stabilizing effect from the basic flow due to the 
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surface deformation then becomes smaller, tending to being negligible. The neutral 
curves are then almost independent of the Crispation number. Numerical results 
indicate that for very large wavenumbers the critical Ma, in figure 15 actually 
decreases as Cr increases, though the decreases are too small to be seen from the figure. 

= 0, demonstrate the 
Marangoni instability for large-wavelength disturbances. However, the instability is 
stabilized by the perturbed concentration at the interface. In the case of r =I= 0, the 
instability may be completely suppressed, like the results shown in previous sections. 

Results of this subsection, calculated for the case of 

5. Conclusions 
In Li & Ji (1994), a linear stability analysis of a falling film yielded the previously 

known surface wave mode of instability and a mode which was called the ‘wall wave’ 
mode. Performing the same analysis for a film with a surface-active solute here, we 
found an additional mode of instability at low Reynolds number. This conditionally 
unstable mode originates in the eigen-equation for the advection-diffusion of the 
solute, and it is therefore called ‘diffusion wave’ here. The corresponding unstable 
wave is thought of as induced by the Marangoni effect. 

As found by earlier authors, the presence of a surface-active solute stabilizes the 
surface wave. The growth rate and the wavenumber for the most unstable wave as well 
as the critical wavenumber all decrease. But the wave velocity for the most unstable 
wave increases. 

Introducing a surfactant has a negligibly small effect on the ‘wall wave’ mode of 
instability, which is easily understood: the ‘wall wave’ mode is mainly associated with 
the wall but the effect of a surfactant is largely near the interface. 

Whether the ‘diffusion wave’ will be stable or unstable depends on several 
parameters. The onset of instability is favoured by a large Marangoni number, a low 
adsorption number and a large Biot number or, in physical terms, the faster the solute 
evaporates, the less adsorbed it is, the more unstable the mode will be. However, the 
‘diffusion wave’ may never become unstable for small Ma, or BiA, or large r 
depending on the Reynolds number. The volatile property of the surfactant in the 
model is necessary to cause the Marangoni instability of the ‘diffusion wave’ because 
it produces a non-uniform profile of the basic concentration. The unstable ‘diffusion 
wave’ occurs preferably for low Reynolds numbers, and it has higher wavenumber (or 
shorter wavelength) in comparison with the surface wave. 

The Marangoni instability of the ‘diffusion wave’ is thought to be analogous to the 
thermocapillary instability examined first by Pearson (1958) for a thin layer of fluid 
heated from below. The Marangoni instability of large-wavelength disturbances, 
revealed recently by Goussis & Kelly (1990) in a study of the same system as Pearson’s 
but allowing surface deformation, is examined for present system as well, assuming a 
zero surface-excess concentration of the surfactant. However, when adsorption is 
considered, the Marangoni instability of the interfacial mode may be completely 
suppressed. 

As mentioned in the Introduction, it has been found that surface-active agents could 
increase the capacity of absorption cooling machines. One conjecture to explain the 
phenomenon is that the surfactants could improve the mass transfer in the falling films 
of the absorber of the machines. The results of the present work may provide a 
confirmation of the conjecture as follows. The instability of a falling film without 
surfactants at low or moderate Reynolds numbers is governed by the surface wave 
mode. This mode is unstable for large-wavelength disturbances. The Marangoni effect 
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in the presence of a surfactant leads to the unstable ‘diffusion wave’ for moderate- or 
small-wavelength disturbances. This ‘diffusion wave’, which may attach to the long 
surface wave, could enhance the mass transfer rate of an absorption falling film. 
However, this work could only provide a qualitative explanation: the absorption 
process which includes both heat and mass transfer has not been considered in the 
present model, and the Marangoni instabilities of longitudinal rolls, which may be 
more unstable than the instabilities of transverse waves (Goussis & Kelly 1991), have 
not been examined. 

The authors wish to thank Dr J. Li for his useful suggestions in the solution method 
for the eigenvalue problem. The authors wish also to thank Dr H. Bjurstrom for 
helpful discussions. Many useful criticisms by the referees are gratefully acknowledged. 

Appendix. Unperturbed concentration profile for the surface-active solute 
In the steady unperturbed state, the velocity field has been assumed to be one- 

dimensional, as in equation (1): U = 1 - y 2  and u = 0. Substituting (12) into (4), (9) and 
(1 l), using the one-dimensional velocity, we obtain the dimensionless equations for the 
unperturbed concentration of the surfactant, 

with boundary conditions 

= Bi, cA 
aY 

at Y = 0, 

_-  a ‘ ~  - 0  at y = 1, 
aY 

where Pe, is the mass PCclet number for the additive, and BiA the Biot number, defined 
in (15). 

Since the mass PCclet number for additives PeA may be estimated as 106-107 (Perry 
& Chilton 1973), the penetration depth of the surfactant will be much smaller than the 
depth of the film for the contact times of the film with the gas phase in practical cases. 
We may then assume U =  1 when solving (A 1) and neglect the diffusion in the x- 
direction in comparison with that in the y-direction. Using a semi-infinite-layer 
approximation, and assuming that the concentration of c; is c,, at the initial x* = 0, 
or in dimensionless form: c, = 1 at x = 0, a solution can be obtained by the Laplace 
transform technique as follows : 

(A 4) cA(x, y )  = erf ( y , )  + exp k2 -y;) [ - erf (g)], 

with 

where erf is the Error function. The concentration profile depends on both x and y. 
However, for large values of Pe,, the dependence of the unperturbed concentration 
(A4) on x may be quite weak. In the stability analysis, we may assume that the 
concentration of the surfactant at the basic state is a function of y only. 
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